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ABSTRACT

Accurately simulating convective mode evolution can assist forecasters in the severe weather warning

process. A few prior studies have examined the skill of simulating convective modes using single, de-

terministic forecasts. The present study extends the earlier evaluations to a small, four-member ensemble,

with each member incorporating varying initial and lateral boundary conditions, microphysics schemes, and

planetary boundary layer schemes. Simulated convective modes from thirty-two 12-h simulations were cat-

egorized into nine classifications using a classification scheme developed from previous studies. Multiple

methods were used to derive forecasts of these convective classifications, creating an hourly deterministic

ensemblemode forecast and probabilistic forecasts for 1-, 6-, and 12-h periods. Forecasts were compared with

observed radar reflectivity for verification. In general, hourly deterministic ensemble mode forecasts showed

improvement over individual member forecasts. The small ensemble produced more skillful individual cel-

lular convective mode forecasts than individual linear mode forecasts, with the least skill present for bow

echoes and squall lines with trailing stratiform precipitation. In contrast, the ensemble was more skillful at

forecasting the broader linear convective group than the broader cellular convective group. For a limited

number of these cases, a test was performed using a larger 10-member ensemble run by the National Center

for Atmospheric Research (NCAR) to examine what impacts the small ensemble size might have. The results

did not differ substantially, suggesting the findings from the small ensemble can be generalized. Probabilistic

forecasts for longer time periods were more skillful than shorter-term probabilistic forecasts.

1. Introduction

Accurate simulation of convective mode evolution can

provide additional useful guidance for severe weather

forecasts and warnings because individual convective

modes have been found to be associated with different

severe storm report types. Tornadoes and hail of all sizes,

for example, were the two main threats associated with

cellular convection in Gallus et al. (2008, hereafter G08)

andDuda andGallus (2010). Of cellular convectivemode

classifications, discrete cells within a broken line were

associated with the most tornadoes in two previous

studies (G08; Smith et al. 2012). Damaging winds have

been found to be the greatest threat from linear convec-

tion (G08), particularly with bow echoes (Fujita 1978).

Linear systems with any associated stratiform pre-

cipitation (leading, parallel, or trailing) and broken-line

cellular systems have been shown to be the greatest flash

flood threats (Pettet and Johnson 2003; G08). The Pettet

and Johnson (2003) and G08 conclusions are consistent

with the Doswell et al. (1996) findings that slow-moving,

training convection often causes flash floods.

Although a consensus exists that different convective

modes favor different types of weather hazards, numerous

different methods of classification have been proposed.

Bluestein and Jain (1985), for example, used squall-line

development from broken-line, back-building, broken-

areal, and embedded-areal convection to classify convec-

tive systems. Parker and Johnson (2000) proposed trailing,

parallel, and leading squall-line classifications based

on stratiform precipitation location. Later, Fowle and

Roebber (2003) added multicellular and isolated convec-

tive mode classifications to examine mode depiction in

numerical models, and Done et al. (2004) applied a two-

category classification scheme that separated convection

into either quasi-linear or non-squall-line categories. An

automated classification process developed by Baldwin

et al. (2005) categorized events as nonconvective, con-

vective linear, and convective cellular based on observed

hourly precipitation amounts. Baldwin et al. (2005) furtherCorresponding author: Bradley R. Carlberg, bcarl@iastate.edu
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separated cellular convection into isolated cell and multi-

cell cluster categories, and G08 identified clusters of cells

as a separate category from isolated cells or lines of cells.

When convection was neither linear nor cellular, Grams

et al. (2006) categorized it as continuous nonlinear. G08

and Duda and Gallus (2010) used many of these convec-

tivemodes and added the classification of a squall line with

no stratiform precipitation while relating severe storm re-

ports to each convective mode. Because G08 used a clas-

sification scheme that provides a comprehensive number

of categories built from the previous studies (five linear,

three cellular, and one nonlinear), their scheme was used

to classify convective systems in the present study.

Convection-allowing model simulations are now

commonly run and have the ability to resolve finer-scale

convective system details that are similar to those seen

with observational radar (Done et al. 2004; Kain et al.

2006). However, Done et al. (2004) and Snively and

Gallus (2014, hereafter SG14) have shown that the

Weather Research and Forecasting (WRF) Model still

struggles with producing some linear convective modes.

Done et al. (2004) showed the WRF Model did not

simulate enough stratiform rain regions, while SG14

found that theWRFModel poorly simulated squall lines

with trailing stratiform precipitation and bow echoes.

These previous studies focused on convective mode

prediction using single deterministic forecasts. To ad-

dress the uncertainty in a given forecast, combinations

of model configurations are being increasingly used to

create ensemble forecasts (Toth and Kalnay 1993;

Elmore et al. 2003; Homar et al. 2006; Leutbecher and

Palmer 2008; Clark et al. 2009). Historically, ensemble

mean forecasts have typically performed better than

individual members (Leith 1974; Fritsch et al. 2000;

Baars and Mass 2005), and ensembles facilitate proba-

bilistic forecasts (Murphy 1991). However, the use of an

ensemble to predict the convective mode poses some

additional challenges as the events being predicted fall

into a set number of categories that cannot be numeri-

cally averaged. An example of a similar challenge can be

found in Wandishin et al. (2005), who created post-

processing algorithms to produce precipitation-type

forecast probabilities.

The ability for a small, four-member WRF ensemble

to improve short-term convective mode forecasts is the

focus of the present study. Although such a small

convection-allowing ensemble has potential for several

shortcomings, the present study can be thought of as a

test to provide an initial look into the process of applying

an ensemble forecast to convective modes. Twelve-hour

simulations with a convection-allowing 4-km horizontal

grid were completed to produce forecasts using the

WRFModel, version 3.6.1, with theAdvancedResearch

dynamics core (ARW; Skamarock et al. 2008). Themodel

was chosen because it could be used in a real-time setting,

which was necessary to support a project goal of pro-

viding information to a local National Weather Service

office for consideration during operational forecasting

situations. To produce forecasts for real-time situations,

the WRF simulations were initialized while convection

was occurring, or about to occur, in the U.S. Upper

Midwest study domain (Fig. 1). The study period covered

the 2015 and 2016 warm seasons (March–September).

A total of 32 simulations covering 21 days (Table 1) were

investigated based on convection occurring continuously

within the domain for a minimum of 6 h, matching the

persistence requirement of Done et al. (2004). Because of

the potential shortcomings with a small ensemble, a

limited analysis of a larger ensemble was also conducted

to test how sensitive convective mode forecasts are to

ensemble size. Details of the ensemble setup, convective

mode classification, forecast creation, and forecast veri-

fication methods are explained in section 2. Results from

the forecasts are described in section 3. Finally, conclu-

sions are presented in section 4.

2. Methodology

a. Ensemble generation and classification

A small WRF ensemble that varies the sources of

initial and lateral boundary conditions was used to cre-

ate convective mode forecasts (Table 2). The ensemble

was restricted to four members because of the limited

FIG. 1. The domain for which ensemble convectivemode forecasts were

tested including the nine radar locations used for data assimilation.
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computational resources available. Because the intent

of these forecasts was to provide real-time information

to National Weather Service forecasters, it was impor-

tant that the ensembles could be generated in a short

time frame. Therefore, 3- or 6-h model forecast output

from the NAM and GFS models was used for the initial

conditions, and subsequent forecasts were used for lat-

eral boundary conditions. For example, a simulation

initialized at 0600 UTC used the 6-h forecast output

from the 0000 UTC NAM and GFS runs for initial

conditions with the 9-, 12-, 15-, and 18-h forecasts used

for lateral boundary conditions. Because the number of

ensemble members used for an initial look into applying

an ensemble forecast to convectivemodes was limited to

four, the members were designed to provide as diverse a

set of forecasts as possible without using more sophis-

ticated methods of perturbing the initial and lateral

boundary conditions. Two of the members used the

same model forecast output for both initial and lateral

boundary conditions; the other two members mixed the

model forecast output with initial conditions supplied

from one model and lateral boundary conditions from

the other model (hereafter the individual members will

be referred to using the syntax of initial conditions/lateral

boundary conditions: NAM/NAM, GFS/GFS, NAM/

GFS, and GFS/NAM). Each of the four configurations

also featured different microphysics and planetary

boundary layer scheme combinations (Table 2). The

NAM/NAM member was paired with the Thompson

two-moment microphysics scheme (Thompson et al.

2008) and the Yonsei University (YSU) planetary

boundary layer (PBL) scheme (Hong et al. 2006). The

GFS/GFS member combined the Morrison two-moment

microphysics scheme (Morrison et al. 2009) and the

Mellor–Yamada–Nakanishi–Niino level 2.5 (MYNN)

PBL scheme (Nakanishi and Niino 2009). The NAM/

GFS member used the Goddard microphysics scheme

(Tao et al. 1989) with the Quasi-Normal Scale Elimina-

tion (QNSE) PBL scheme (Sukoriansky et al. 2005).

Finally, the GFS/NAM member combined the WRF

single-moment 6-class (WSM6) microphysics scheme

(Hong and Lim 2006) and the Mellor–Yamada–Janjić

(MYJ) PBL scheme (Janjić 1994).

To reduce possible model spinup problems in the first

few hours of a forecast, raw NEXRAD level II radar

data were assimilated with 4-km resolution at the initial

time step of the forecast for all four members. Radar data

assimilation has also been shown to improve quantitative

precipitation forecasts (QPFs) during the first 6–8 h of a

forecast (Berenguer et al. 2012; Stratman et al. 2013). The

radar data from nine WSR-88D radars covering the

800 km3 800 km domain centered on Des Moines, Iowa,

in the Upper Midwest were used (Fig. 1). These nine ra-

dars include Aberdeen, South Dakota (KABR); Sioux

Falls, SouthDakota (KFSD);Omaha,Nebraska (KOAX);

Kansas City, Missouri (KEAX); Saint Louis, Missouri

(KLSX); Lacrosse, Wisconsin (KARX); Twin Cities,

Minnesota (KMPX); Davenport, Iowa (KDVN); and Des

Moines, Iowa (KDMX). The radar data were assimilated

by the Advanced Regional Prediction System (ARPS)

three-dimensional variational data assimilation (3DVAR)

program and the ARPS Data Analysis System (ADAS;

Brewster 1996). Hydrometeors and cloud fields were ad-

justed based off the radar reflectivity data through the use

TABLE 1. Initialization times and dates for all 32 simulations.

2015

1200 UTC 9 Apr 1800 UTC 28 Jul

2100 UTC 18 Apr 0000 UTC 29 Jula

0000 UTC 4 Maya 0600 UTC 9 Aug

0000 UTC 5 Maya 0000 UTC 10 Auga

1200 UTC 7 May 0000,a 0300, and 0600

UTC 17 Aug

1200 UTC 24 May 0300, 0600, 0900, and

1200 UTC 18 Aug

0300 UTC 7 Jun 0300, 0600, and 0900

UTC 28 Aug

0600, 1200, and

1800 UTC 24 Jun
2016

0000 UTC 25 Juna 2100 UTC 23 Mar

1200 UTC 11 Jul 0000 UTC 6 Apra

0600 and 1200 UTC 16 Jul 1200 UTC 9 May

a Case used for the NCAR comparison.

TABLE 2. WRF Model configurations of each ensemble member from the present study and SG14.

Member 1 Member 2 Member 3 Member 4 SG14

Initial conditions NAM GFS NAM GFS NAM

Lateral boundary conditions NAM GFS GFS NAM NAM

Microphysics scheme Thompson Morrison Goddard WSM6 Thompson

PBL scheme YSU MYNN 2.5 QNSE MYJ MYJ

Longwave radiation scheme Goddard Goddard RRTMG Goddard RRTM

Shortwave radiation scheme Goddard Goddard RRTMG Goddard Dudhia

Land surface scheme Noah Noah Noah RUC Noah

Surface-layer scheme MM5 MM5 QNSE Eta Eta
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of a cloud analysis procedure, a component of both ADA

and ARPS 3DVAR, and the radial velocity data were

analyzed by the three-dimensional variational scheme (Hu

et al. 2006; Moser et al. 2015; Yan and Gallus 2016). Fur-

thermore, external data are interpolated onto the ARPS

grid, and theARPS program reduces the initial oscillations

in the pressure field by adjusting the wind fields to ensure

the anelastic mass continuity equation is satisfied (CAPS

2017). Reducing the initial oscillations in the pressure field

helps to mitigate any model spinup issues that might arise

with mixing NAM and GFS initial and lateral boundary

conditions.

Simulated radar reflectivity was output hourly from

each model run and used to classify the convective

system(s) present based on the nine classifications used

in G08 (Fig. 2): isolated cells (IC), cluster of cells (CC),

broken line (BL), squall line with no stratiform pre-

cipitation (NS), squall line with parallel stratiform

precipitation (PS), squall line with leading stratiform pre-

cipitation (LS), squall line with trailing stratiform

precipitation (TS), bow echoes (BE), and nonlinear sys-

tems (NL). Each of the nine classifications was also

grouped into three broader categories: cellular convection

consisting of IC, CC and BL events; linear convection

including NS, PS, LS, TS, and BE events; and NL. Ob-

served systems were classified in the same manner using

radar reflectivity from the University Corporation for

Atmospheric Research’s (UCAR) image archive (in-

formation can be found at http://www2.mmm.ucar.edu/

imagearchive/). While there is inherently some sub-

jectivity built into the classification, guidelines used in

G08, Duda and Gallus (2010), and SG14 were followed

closely. The threshold used for convection was 40 dBZ

over an area of at least 8 km 3 8 km, and the threshold

for stratiform precipitation was 30dBZ (Hilgendorf and

Johnson 1998). In order for a system to be considered

linear, the convection needed to be at least 75 km long

and have a 3:1 length-to-width ratio (G08). In addition,

stratiform precipitation associated with linear convec-

tion needed to be at least twice as wide as the convective

precipitation to be classified as TS, LS, or PS. Further-

more, as in SG14, characteristics of a convective mode

needed to occur for at least two consecutive hours in

order to receive that classification. Because of this con-

secutive hour requirement, a small fraction (13%) of the

hourly forecasts are not truly independent samples.

FIG. 2. Schematic from G08 showing the nine convective modes used for classification.
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A four-member ensemble would likely be smaller

than those used operationally. Therefore, to get better

insight into how the results from this study apply to other

ensembles, the more sophisticated, 10-member National

Center for Atmospheric Research (NCAR) ensemble

(Schwartz et al. 2015) was also evaluated. The NCAR

ensemble forecasts were initialized once daily at 0000

UTC (information can be found at http://ensemble.ucar.

edu/about.php), matching the initialization times from

seven of the small WRF ensemble events. Thus, these

seven events were chosen for evaluation (Table 1).

b. Forecast approaches

Multiplemethods were used to create convectivemode

forecasts based on the ensemble output. The first method

created a deterministic forecast by selecting the statistical

mode from the four members for each forecast hour,

because the categorical convective modes cannot be nu-

merically averaged in a way to produce a traditional en-

semble mean forecast. For example, if three ensemble

members produced a CC classification and the fourth

produced a BL classification at a given hour, the ensem-

ble mode was assigned as CC. Once the ensemble modes

were determined, the forecast method followed the pro-

cedure in SG14 with a few modifications. The simulated

convective modes immediately before and after the hour

of interest were used to determine the mode when a tie

occurred among the four ensemble members. When the

same ensemble mode occurred in the prior and post

hours, the convective mode at the time of the tie was

classified to match the mode from the surrounding hours.

If the ensemble mode matched just one of the prior or

post hours, the mean was reclassified to match that con-

vective mode. Because of the tendency for TS and BE to

be underpredicted (Done et al. 2004; SG14), two en-

semble mode bias corrections were used to favor TS and

BE with the small WRF ensemble. First, when at least

two of the four members were classified as TS (BE), the

ensemblemodewas set toTS (BE). Second, the ensemble

mode was set to TS (BE) when that particular hour

forecast at least one member producing a TS (BE). After

the bias corrections were made, the requirement of a

mode needing to persist for two consecutive hours was

still enforced.

The second forecast method produced hourly probabi-

listic convective mode forecasts using two different tech-

niques. In one, forecast probabilities of a convective mode

were calculated from convective modes simulated for that

particular hour, hereafter referred to as the direct forecast

method. BecauseDuda andGallus (2013) and SG14 found

that timing errors were often present in convective mode

forecasts, a 3-h neighborhood forecast method was also

used to produce probabilistic forecasts for a given hour,

hereafter referred to as the neighborhood forecast

method. The neighborhood forecast method calculated

probabilities of convective mode using the ensemble

members for the current hour, 1 h prior, and 1 h post. For

consistency, the neighborhood forecast method was only

used when output from all three hours was available, thus,

the first and last hours of a simulation were excluded.

The third forecast method created probabilistic fore-

casts of all nine convective modes occurring during a

6- or 12-h period. Probabilities of each mode were cal-

culated for the entire 12-h forecast, the first 6 h of the

forecast, and the last 6 h of the forecast. Individual mode

probabilities were calculated based on how frequently a

mode was forecast out of 48 possible occurrences for a

12-h period (four members 3 12 h) and 24 possible oc-

currences for a 6-h periods (four members 3 6 h). For

example, if TS was forecast by only one member for the

first 6 h of a simulation, the forecast probabilities would

be 12.5% for the 12-h period (6/48), 25% for the first 6-h

period (6/24), and 0% for the second 6-h period (0/24).

c. Forecast verification

The deterministic ensemble mode forecasts were

verified using the accuracy score introduced in SG14.

Time was normalized with the simulation initialization

set to zero and the end of a simulation, or the dissipa-

tion of convection, set to one. The duration of each

convective mode was represented as a fraction of this

time. Hourly simulated convective modes were com-

pared to the hourly observed convective modes and

scored until the normalized time of 1.0 (minimum of

6 h and maximum of 12 h). When the simulated con-

vective mode was a direct match with observations, a

score of 1 was given. A score of 0.5 was given when the

simulated convective mode matched the same group as

observed but was not a direct match with the specific

subtype. Finally, when there was no match, a score of

0 was given. The resulting accuracy scores ranged from

0 to 1 for each forecast, with 1.0 being a perfect fore-

cast. The ensemble mode scores were then summed to

determine the overall event accuracy score S using

S5 �
N

i51

MDt , (1)

where N represents the total number of mode compari-

sons possible (a function of the number of times themode

changed in either the observations or the forecast),M is a

weight based on the match type (direct, group, or no

agreement) as described, and Dt is the normalized dura-

tion of the mode comparison (SG14). The forecasts were

evaluated before and after correcting for the low bias in

TS and BE forecasts.
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The reliability of each convective mode was evaluated

graphically for both the hourly direct and neighborhood

forecast methods. Reliability is determined from a con-

ditional distribution [p(ojf )] indicating how often an

observed convective mode o occurred when a particular

forecast mode f was given. Forecasts have perfect re-

liability when

p(o5 1jf )5 f , (2)

(Murphy and Winkler 1987; Franz et al. 2003), that is,

when the observed relative frequency of a convective

mode equals the forecast probability for that mode

(Murphy and Winkler 1992).

Because a 6- or 12-h time period can have multiple

convective modes observed and forecast within the pe-

riod, the divergence score (DS) and divergence skill score

(DSS) introduced byWeijs et al. (2010) were also used to

verify the probabilistic forecasts. The DS is calculated

using the Kullback–Leibler (KL) divergence, which is a

measure of relative entropy (Kullback and Leibler 1951).

DS is similar to a Brier score (BS); however, the DS is

asymmetric (whereas BS is symmetric) and incorporates

multiple possible forecast solutions (whereas BS uses

binary solutions) (Weijs et al. 2010). DS for a given

forecast can be interpreted as the reduction of un-

certainty in a probabilistic forecast from a climatological

forecast (Weijs et al. 2010). DS is calculated as

DS5D
KL

(o
i
jf
i
)5 �

n

i51

o
i
ln

�
o
i

f
i

�
, (3)

which is read as divergence from f to o (KL divergence is

directional) and is always positive for an entire forecast.

In Eq. (3), n represents the total number of convective

modes possible (nine), o represents the observed prob-

ability of convective mode i, and f represents the fore-

cast probabilities of the same convectivemode occurring

over the 6- or 12-h periods, respectively. Climatological

DS forecasts were calculated as

DS
ref

5
1

N
�
N

t51

DS, (4)

whereN is the total number of forecasts. Because of the

limited sample size, an investigation into one or two DS

values affecting the climatology too strongly was com-

pleted. Ten such potential outliers were found, but they

did not significantly impact the results of our analysis.

A perfect forecast would result in a DS of zero with

DS increasing as the uncertainty of a forecast increases.

If DS of a particular forecast is equal to the climato-

logical DS, then that forecast did not contain any more

information than the climatology and essentially added

no additional value (Weijs et al. 2010). A DS greater

than climatology indicates an increase of uncertainty

compared to climatology, and a DS between zero and

the climatological value indicates a decrease of un-

certainty compared to climatology in that particular

forecast. It should be noted that a reduction (increase) in

forecast uncertainty means that a forecast performed

better (worse) than a climatological forecast. Similar

to the BS, a procedure to normalize the DS relative to

a climatological forecast was completed, yielding the

DSS. Forecasts with numerous categories such as con-

vective modes are calculated using (Weijs et al. 2010)

DSS5 12
DS

DS
ref

. (5)

The DSS transforms a perfect forecast score from zero

to one, and forecasts that are poorer than climatology

become negative. DSSs were determined for each of the

12-h forecasts, the first 6 h of each forecast, and the last

6 h of the forecast.

Two issues arise with these equations when either the

observed or forecast probability is zero. First, when a par-

ticular convective mode was forecast but not observed

(oi 5 0) (Kullback and Leibler 1951), the result was treated

as zero in the summation. This produces an artificial re-

duction of forecast uncertainty. Second, when a convective

mode was observed but not forecast (fi 5 0) the equation

became undefined. Therefore, a small epsilon value of 0.02

was introduced toeliminate these two issues (Han2017).This

valuewas chosen because a convectivemode is only included

when it lasts for at least two consecutive hours, and thus the

lowest forecast probability for a convective mode is 0.042

for a 12-h forecast period [2/48 (12 h 3 four ensemble

members)]. Although a convective mode is required to

last for two consecutive hours, a convective mode could

be predicted for hours 6 and 7 of a forecast period, re-

sulting in the possibility of having a forecast convective

mode occurring just once during a 6-h forecast period. In

this case, the lowest forecast probability is also 0.042 [1/24

(6 h3 fourmembers)]. Furthermore, the epsilon value of

0.02 is small enough to induce a noticeable penalty for

observed modes that were not forecast or forecast modes

that did not occur as would be expected, but will prevent

unreasonably large penalties from occurring.

The performance of individual convective mode

forecasts was also evaluated using the DS and DSS.

Although the DS for a given forecast including all con-

vective modes is always positive, individual modes can

have either positive or negative DS values. A positive

(negative) DS mode value means the forecast proba-

bility of the mode is lower (higher) than the observed
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climatological probability of the mode, indicating an

underforecast (overforecast). Because KL divergence is

not symmetric, it is difficult to determine what DS value

represents a perfect forecast for a particular mode, thus,

determining whether a DS value indicates an increased

or decreased forecast uncertainty from climatology is

also problematic. Therefore, the ratio of the absoluteDS

value of each forecast mode (DSmode) to the absolute

DS value for the study climatological forecast mode

(DSmoderef) was used to calculate the DSS for each indi-

vidual mode, or DSSmode,

DSS
mode

5 12
jDS

mode
j

jDS
moderef

j , (6)

to determine whether uncertainty for that mode in-

creased or decreased compared to climatology. A ratio

of absolute DS values provides information about how

much the overall uncertainty has increased or de-

creased, but fails to provide information about under- or

overprediction of a particular convective mode.

3. Results

Forecasts covered periods with 71 distinct observed

convective modes and the four ensemble members

simulated 360 different convective modes. However, the

total number of simulated convective modes may not be

thought of as a fully independent sample, as synoptic or

mesoscale conditions can favor a particular mode,

causing possible cross-member correlation in some

forecasts. Forecasts produced higher relative frequen-

cies than were observed for IC, NS, and NL, and lower

relative frequencies than were observed for the remain-

ing five convective modes (CC, BL, TS, PS, and BE)

(Fig. 3). In addition, results for IC, NS, TS, and BE were

similar to those in SG14 in which 115 observed con-

vectivemodes and 109 simulated convectivemodes from

the 2006 to 2010 warm seasons were examined. SG14

included three observed and one simulated mixed con-

vective mode systems, but mixed-mode systems were

not investigated in the present study and therefore were

removed from the SG14 sample, resulting in 112 ob-

served convective modes and 108 simulated convective

modes for comparison. It should be noted that SG14

investigated systems occurring over the U.S. Great

Plains and Upper Midwest rather than primarily over

Iowa as in this study, and their simulations were run for

24 h rather than 12 h. Also, because they focused on

deterministic runs from a single model configuration,

FIG. 3. Relative frequencies of observed and simulated convec-

tive modes (observed, blue; simulated, cyan) and SG14 (observed,

yellow; simulated, red).

TABLE 3. Hourly ensemble modes of the seven cases comparing the small WRF and NCAR ensembles. A plus sign (1) indicates clear

ensemble modes (.50% member agreement), and a minus sign (2) indicates ensemble modes requiring a tie breaker. Hours where the

ensemble mode did not predict a convective mode are marked with an asterisk (*).

1 2 3 4 5 6 7 8 9 10 11 12

4 May 2015 WRF NS1 NS1 NS TS TS CC1 CC1 CC1 CC1 CC1 IC2 IC

NCAR CC1 CC1 CC1 CC1 CC1 CC1 CC1 CC1 CC1 CC BL BL

5 May 2015 WRF BE BE1 BE1 BE BE2 CC1 CC1 CC1 CC1 CC1
NCAR CC1 CC CC CC1 CC CC CC CC BL2 BL2

25 Jun 2015 WRF CC1 CC1 CC1 CC2 BL BL BL2 CC2 CC CC1 CC1 CC

NCAR CC1 CC CC BE2 BE BL1 BL1 BL1 BL CC1 CC1 CC1
29 Jul 2015 WRF CC1 CC1 CC BL1 BL1 CC1 CC1 CC1 *

NCAR * CC1 CC1 CC1 CC1 CC2 CC1 CC1 CC1
10 Aug 2015 WRF CC1 CC1 CC1 CC1 CC1 CC1 CC1 CC1 CC1 CC1 CC1 CC1

NCAR * CC CC1 CC1 CC CC CC CC1 CC1 CC1 CC1 CC1
17 Aug 2015 WRF NS1 NS1 CC CC2 CC CC CC1 CC1 CC1 CC1 CC1 CC1

NCAR CC CC CC NS NS2 NS PS PS2 CC CC1 CC1 CC1
6 Apr 2016 WRF CC2 CC1 CC1 CC1 CC1 CC1 CC1 CC1 CC1 CC CC2 CC2

NCAR BL BL BL CC1 CC1 CC1 CC1 CC1 CC1 IC1 IC1 IC
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there would naturally be some model configuration

differences between the two studies (noted in Table 2).

TS and BE were the most underpredicted convective

modes with TS events simulated 47.5% less frequently

than observed and BE events simulated 52.4% less fre-

quently than observed (Fig. 3). This result is similar to

SG14. Done et al. (2004) also showed a tendency for

convection-allowing WRF forecasts to underpredict TS

systems (they did not classify BE events). CC events

were observed and simulated much more frequently

than the eight other convective modes (Fig. 3), with

27.5% more observed occurrences and 29.2% more

simulated occurrences than the next most frequently

occurring convective modes. In addition, the relative

frequencies of simulated and observed CC events were

similar with simulated events occurring only 1.1% less

often than observed. This is in contrast to SG14, who

reported that CC events were simulated 137% more

frequently than observed.

The deterministic ensemble mode forecasts resulted

in an average accuracy score of 0.50 with 60% of the

forecasts scoring 0.50 or higher, both of which were

higher than three of the four individual ensemble

members. Despite not being a traditional ensemble

mean, these results are consistent with findings that

deterministic ensemble mean forecasts typically per-

form better than single, deterministic forecasts (Leith

1974; Fritsch et al. 2000; Baars and Mass 2005). For

comparison, SG14 had an average score of 0.49 for 37

simulations with 41% of the forecasts scoring 0.50 or

higher. Reclassifying the hourly ensemble mode con-

vective modes to TS (BE) when at least two members

FIG. 4. Reliability diagrams for all nine convective modes using the direct forecasting method. Frequencies of occurrence for forecast

probabilities are shown above each diagram.
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were originally classified did not change the average

accuracy score of 0.50 (only two forecasts were adjusted

by this correction). The more liberal bias correction of

reclassifying hourly ensemble mode forecasts to TS

(BE) if at least one ensemble member was classified as

TS (BE) resulted in an accuracy score of 0.41. This

correction affected 20 forecasts, with 7 improved accu-

racy scores and 13 worsened accuracy scores.

For individual members, the NAM/NAM member

resulted in a score of 0.57, while the three remaining

members each scored 0.45. Similarly, the NAM/NAM

member produced the highest percentage of forecasts

scoring at least 0.50 at 66% compared to 43% for the

GFS/GFS member, 37% for the NAM/GFS member,

and 49% for the GFS/NAM member.

Despite it being much larger and having a more sys-

tematic approach in member creation, the skill of the

NCAR ensemble was similar to the skill of the small

WRF ensemble for predicting convective mode. The

NCAR ensemble mode average score for the seven

events investigated was 0.46 with 43% of the forecasts

scoring at least 0.50, while the small WRF ensemble

mode scored an average of 0.49 for the same events with

57% of the forecasts scoring at least 0.50. While the

average mode from the smaller ensemble scored higher

than 3 of the 4 members, the average NCAR ensemble

mode scored higher than all 10 individual members.

The small WRF ensemble produced a clear convec-

tive mode (.50% member agreement) in 67% of the

possible forecast hours and a tie among at least two

members where the surrounding hours were used to

determine the mode 10% of the time. Comparatively,

the NCAR ensemble produced clear modes 62% of the

time and ties 9%. In addition, the NCAR ensemble

members produced a majority mode with less than 50%

member agreement 29% of the time, which was slightly

FIG. 5. As in Fig. 4, but using the neighborhood forecast approach.
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more frequent than the WRF ensemble (23% of the

time), suggesting that the larger ensemble may produce

a wider spread of possible forecasts. Additionally, the

same convective mode was forecast by both ensembles

54%of the time (Table 3). These results are encouraging

and suggest that the simple, very small ensemble used

in the present study may not behave substantially dif-

ferently than larger ensembles typically being used

for convection-allowing guidance by operational fore-

casters today. Although caution must be used as a result

of the small sample size, the relative agreement suggests

the results from the small, four-memberWRF ensemble

may be robust.

Reliability for the hourly forecast probabilities varied

among the individual modes (Fig. 4). CC was the only

convective mode that had a relatively large number of

forecasts with 100% probability (54), and NS was the

only other convective mode to have forecasts with 100%

forecast probability (6). Forecasts of CC underpredicted

for the 0% and 25% forecast probabilities and over-

predicted for the 50%, 75%, and 100% forecast proba-

bilities (Fig. 4b). BL forecasts were reliable up to the

50% forecast probability but were underpredicted at the

75% forecast probability. Forecasts of individual linear

systems (NS, TS, PS, LS, and BE) had poor reliability

with the exception of the 0% forecast probability

(Figs. 4d–h). Although PS and BE forecasts were rela-

tively reliable for 25% forecast probability (20.4% and

19.2% observed frequency, respectively), reliability

declined for forecast probabilities greater than 25% for

both modes. Forecasts for IC and NL were the least

reliable (Figs. 4a,c). However, these twomodes were the

least frequently observed (2 h for IC and 8 h forNL) and,

again, caution should be used when interpreting results

because of the small sample size.

Reliability also varied among individual modes for the

neighborhood forecast method (Fig. 5). Similar to the

direct forecast approach, CC was the only convective

mode to have forecasts that ranged across all forecast

probability levels. Typically, CC was underforecast for

probabilities up to 50% and overforecast for probabilities

greater than 50%(Fig. 5b).With a fewexceptions, BL, TS,

and LS forecasts were fairly reliable up to the 50% fore-

cast probability; however, forecast probabilities greater

than 50% rarely or never occurred (Figs. 5c,e,g). Re-

liability of PS and BE declined with forecast probabilities

FIG. 6. Convective mode group reliability diagrams. Diagrams are as follows: (a) direct forecast method cellular,

(b) neighborhood forecast method cellular, (c) direct forecast method linear, and (d) neighborhood forecast

method linear.
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greater than 25% (Figs. 5f,h), and the IC, NS, and NL

forecasts were the least reliable (Figs. 5a,d,i).

Overall, the broader linear and cellular group fore-

casts were more reliable than those for individual con-

vective modes for both the direct and neighborhood

forecast methods (Fig. 6). Despite individual linear

convective mode forecasts being less reliable than indi-

vidual cellular mode forecasts, the linear convective

group forecasts were more reliable than the cellular

convective group forecasts, in contrast with the results

found in SG14. These results suggest that a small en-

semble can improve forecasts of linear convection;

however, predicting the stratiform precipitation location

remains difficult. In general for both convective groups,

the observed frequency increased as the forecast prob-

ability increased. However, group convection was typi-

cally underestimated when forecast probabilities were

less than 50%, and overestimated for forecast proba-

bilities greater than 50% for both forecast methods,

particularly for cellular convection (Fig. 6). With a few

exceptions, the linear convection forecasts were fairly

reliable, particularly with the neighborhood forecast

method (Figs. 6c,d).

Of the three forecast periods investigated, the 12-h

period had the lowest climatological DS (0.84), implying

that the forecast convective modes for this period were

more closely representative of the observed modes than

the forecast modes for the 0–6- and 6–12-h periods

(Table 4). Despite having the lowest climatological DS

value, the 12-h forecast period had the highest per-

centage (68.8%) of forecasts with reduced uncertainty

from a climatological forecast (Fig. 7), suggesting the

ensemble may have more skill in simulating the relative

frequency of a convective mode over a longer forecast

period. The 0–6-h forecast period resulted in the lowest

percentage of cases with reduced forecast uncertainty

(65.6%), implying that the 0–6-h convective mode

forecasts may not be an improvement over the 6–12-h

forecasts; a result that seems in opposition to previous

findings that radar data assimilation improves QPF skill

and often most notably in the first 6–8 h of a forecast

(Berenguer et al. 2012; Stratman et al. 2013). To explore

this issue further, simulations without radar data as-

similation were run to examine the impact of the as-

similation on convective mode forecasts during the first

few hours (not shown). Simulations using radar data

assimilation generally did forecast more vigorous con-

vection during the first few hours than simulations

without using assimilation, resulting in improved con-

vective mode forecasts early in the period compared to

when no assimilation was used. Thus, these results are

similar to previous studies that investigated the effects

of radar data assimilation on forecasting convection

(e.g., Kain et al. 2010; Schenkman et al. 2011; Stratman

et al. 2013; Moser et al. 2015). The fact that skill may not

be as good in the first 6 h as it is for the 6–12-h forecast

period is thus not the result of the assimilation harming

the forecasts. Instead, it implies that the convective

mode may be more predictable later in the lifetime of

convective systems, even if QPF skill declines then.

These results also suggest that although the radar data

assimilation does reduce model spinup issues, the model

might still require time to organize convection in a way

that more closely matches the observations.

DSSs for individual convectivemodes were frequently

equal to one, indicating that there were several perfect

forecasts for each convective mode (Fig. 8; only the 12-h

forecast period is shown). CC had the fewest DSS values

equal to one while LS had the most DSS values equal to

one, which is a function of how frequently the modes

were forecast or observed. There were numerous in-

stances when a given convective mode was neither

forecast nor observed, producing several perfect fore-

casts of nonoccurring modes. This indicates that the

ensemble generally performed well when forecasting

FIG. 7. The 12-h DSSs for all cases. DSSs greater than zero

indicate a reduction in forecast uncertainty (increased skill) com-

pared to climatology.

TABLE 4. Climatological DS and percentage of simulations

where forecast uncertainty was reduced (increased skill) compared

to a climatological forecast for the 0–12-, 0–6-, and 6–12-h forecast

periods.

Forecast

period (h) Climatological DS

Percentage of forecasts

with reduced uncertainty

0–12 0.84 68.8

0–6 1.28 65.6

6–12 1.02 66.7
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nonoccurring modes. Although it is important to un-

derstand how well nonoccurring modes are forecast, it is

perhapsmore important to assess howwell the ensemble

performs when a convective mode is either forecast or

observed since these instances may be thought of as

rare events.

When considering all three forecast periods (0–12, 0–6,

and 6–12 h), the percentage of forecasts with reduced

uncertainty from a climatological forecast was at least

56.3% for all convective modes (Table 5). In general,

modes with better climatological forecasts (lower DSs)

had higher percentages of forecasts with reduced un-

certainty from their respective climatological forecasts,

but this was not the case for all situations. When the

nonobserved, nonforecast modes were excluded, the

percentage of forecasts with reduced uncertainty from a

climatological forecast decreased for every convective

mode except CC (Table 6), suggesting the skill of the

ensemble declines when forecasted modes do occur.

For a better overall comparison, the same climatological

DS values were used for this subset of events. IC aver-

aged the largest decrease in percentage (70.1%) of

forecasts with reduced uncertainty. Because CC was

either observed or forecast for every event, there was no

change in the forecast uncertainty. Note that the LS

forecast probabilities exactly matched the observed

probabilities for all of the 6–12-h forecast periods;

however, only one of the 32 simulations had forecast and

observed an LS during this period. Therefore, the LS

forecast sample size for the 6–12-h period was too small

to draw meaningful conclusions (Tables 5 and 6).

4. Conclusions

One deterministic ensemble mode forecast and mul-

tiple probabilistic forecasts were investigated using a

FIG. 8. The 12-h DSSs for all nine convective modes.
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sample of thirty-two 12-h model simulations to de-

termine the ability of a small WRF ensemble to predict

short-term convective mode evolution. Each simulation

was initialized with assimilated radar data and used 3- or

6-h forecast output from the NAM and GFS models for

initial and lateral boundary conditions to allow for use

in a real-time situation. Convection from these events

was classified into one of nine modes—three cellular,

five linear, and one nonlinear—as described in G08.

Overall, the ensemble produced an overestimation of

IC, NS, LS, and NL systems, while underestimating CC,

BL, TS, PS, and BE systems.

Deterministic forecasts were created using the sta-

tistical mode of the ensemble for each hour. Because

the ensemble is smaller than what would likely be used

operationally, the 10-member NCAR ensemble was

used as comparison for seven events for which data

were available from both ensembles. In addition, two

simple bias corrections were tested to account for the

tendency of TS and BE to be underpredicted for the

small ensemble (Done et al. 2004; SG14). These

deterministic forecasts were verified by using the

accuracy score introduced by SG14. Probabilistic

forecasts were created for 1-, 6-, and 12-h time periods.

Hourly probabilistic forecasts of individual convective

modes and the broader convective groups using a direct

forecast method (mode probabilities calculated using

only that particular forecast hour) and a neighborhood

forecast method (mode probabilities calculated also

using the hour prior and the hour after the time of in-

terest) were verified using reliability. The 6- and 12-h

forecast probabilities were verified using divergence

scores and divergence skill scores, measures of forecast

uncertainty compared to a climatological forecast

(Weijs et al. 2010).

Despite the small size of the WRF ensemble used in

the present study, it does show skill in forecasting

convective mode evolution. Analysis of the larger

NCAR ensemble revealed similar skill, indicating

that a small ensemble with diversemembers could be as

useful in forecasting the convective mode as a larger

ensemble. These results also suggest the analysis of the

small WRF ensemble may be generalizable to other

ensemble systems. The approach using the statistical

TABLE 5. As in Table 4, but for individual convective modes. A plus sign (1) [minus sign (2)] indicates the convective mode producing

the highest (lowest) percentage of improved forecasts compared to a climatological forecast for each forecast period. The asterisk (*)

denotes a sample size too small to draw meaningful conclusions for the LS 6–12-h forecast period.

Climatological DS

Percentage of forecasts with reduced

uncertainty

Convective mode 0–12 h 0–6 h 6–12 h 0–12 h 0–6 h 6–12 h

IC 0.02 0.03 0.02 71.8 90.6 63.62
CC 0.23 0.31 0.38 62.52 75.0 66.7

BL 0.15 0.19 0.16 78.1 78.1 84.8

NS 0.10 0.12 0.09 84.4 93.81 84.8

TS 0.26 0.34 0.28 71.8 81.3 84.8

PS 0.22 0.27 0.22 78.1 84.4 84.8

LS 0.05 0.12 0 93.8 93.81 *

BE 0.10 0.18 0.07 75.0 81.3 93.91
NL 0.05 0.04 0.11 96.91 56.3- 93.91

TABLE 6. As in Table 5, but only including the events with an observed or simulated convective mode.

Climatological DS

Percentage of simulations with information

gained

Convective mode 0–12 h 0–6 h 6–12 h 0–12 h 0–6 h 6–12 h

IC 0.02 0.03 0.02 12.52 3.12 02
CC 0.23 0.31 0.38 62.51 75.01 66.71
BL 0.15 0.19 0.16 59.4 34.4 45.5

NS 0.10 0.12 0.09 59.4 43.8 27.3

TS 0.26 0.34 0.28 46.9 37.5 39.4

PS 0.22 0.27 0.22 40.6 25 33.3

LS 0.05 0.12 0 21.9 12.5 *

BE 0.10 0.18 0.07 28.1 9.4 15.2

NL 0.05 0.04 0.11 59.4 6.3 18.2
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mode for deterministic ensemble forecasts also exhibited

a general improvement in skill over the individual mem-

bers with both ensembles. Similar to previous studies

(Done et al. 2004; SG14), TS and BE forecasts were

among the least accurate. However, simple bias cor-

rections accounting for the underprediction of TS and

BE did not improve the forecast skill, and future

work should explore more sophisticated methods that

might take into account near-storm environmental

conditions.

Probabilistic forecasts of individual convective modes

showed some reliability, with broader cellular and lin-

ear convective groups having more reliable forecasts

than individual convective modes. However, a ten-

dency for the ensemble to underpredict convective

groups for probabilities less than 50% and overpredict

convective groups for probabilities greater than 50%

suggests forecast overconfidence. Consistent with the

behavior of precipitation forecasts, the results indicate

that the ensemble has better skill forecasting convec-

tive modes over the longer 12-h period than either

6-h period.

Given that the present study is preliminary and fo-

cuses on the Iowa vicinity, it is unknown how well the

ensemble will predict convective modes in different re-

gions, such as a mountainous area. Future work should

explore the performance of the ensemble in predicting

convective modes in other regions where the land

characteristics might be more heterogeneous. It is also

unclear how much sensitivity exists between the corre-

lation among ensemble members and the particular

synoptic conditions. Thus, future work should in-

vestigate the role of synoptic setup on the convective

mode forecasts. Future work should also explore addi-

tional ways to produce deterministic convective mode

forecasts from an ensemble.
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